1. 炒鸡蛋与对称密码
你做过炒鸡蛋吗?炒鸡蛋是将鸡蛋打到平底锅里,然后将蛋液炒匀。鸡蛋炒好之后就完全分不清原来的蛋黄和蛋白了,也不再是原来的形状了,而是变成了一团混合物。
使用对称密码进行加密,和炒鸡蛋有异曲同工之妙。为了使原来的明文无法被推测出来,就要尽可能地打乱密文,这样才能达到加密的目的。
炒鸡蛋搅拌的是鸡蛋,而密文打乱的则是比特序列。无论是文本、图像还是音乐,只要能够将数据转换成比特序列,也就能够对其进行加密了。
然而,炒鸡蛋与对称加密有一个很大的不同,那就是炒鸡蛋无法还原成原来的鸡蛋,但密文却必须能够让接受者正确解密才行
。因此,如果只是随便地搅拌和混合,则不能称之为加密而必须仔细设计出一种能够还原的混合方式。
2. 从文字密码到比特序列密码
2.1 编码
将现实世界中的东西映射为比特序列的操作称为编码(encoding)。
2.2 XOR
- 将明文A用密钥B进行加密,得到密文A XOR B
- 将密文A XOR B用密钥B进行解密,得到明文A
实际上,只要选择一个合适的B,仅仅使用XOR就可以实现一个高强度的密码。但是对于密码技术来说,是否可以预测
是至关重要的一点,也就是说必要要保证B不可以被推测出来,这种不可预测的比特序列就称为随机数
3. 一次性密码本
3.1 一次性密码本加解密
一次性密码本是一种非常简单地密码,它的加密原理是将明文与一串随机的比特序列进行XOR运算。如果将硬币的正面设为0,反面设为1,则通过不断抛硬币就能够产生这样一串随机比特序列。
解密局势加密的反向运算。
3.2 一次性密码本是无法破译的
我们假设对一次性密码本的密文尝试进行暴力破解,那么总有一天我们会尝试到和机密相同的密钥,这是毋庸置疑的事实。然后,即便我们能够解密出明文字符,我们也无法判定它是否是正确的明文
。
一次性密码本是由G.S.Vernam于1917年提出的,并获得了专利,因此又称为Vernam cipher。一次性密码本无法破译这一特性有香农(C.E.Shannon)于1949年通过数学方法加以证明的。一次性密码本是无条件安全的(Unconditional Secure),在理论上是无法破译的(Theoretically Unbreakable)。
3.3 一次性密码本为什么没有被使用
- 密钥的配送:密钥的长度与密文是相等的,如果能够有一种方法将密钥安全的送出去,那么岂不是也可以用同样的方法安全地发送明文了吗?
- 密钥的保存:密钥的长度必须和明文的长度相等,如果有办法安全保存密钥,那不也有办法安全保存明文本身吗?
- 密钥的重用:绝不能重用过去用过的随机比特序列。
- 密钥的同步:当明文很长时,密钥也会跟着变长,难以同步。
- 密钥的生成:密钥是必须是无重现性的真正随机数。
综上所述,一次性密码本是一种几乎没有实用性的密码。但是,一次性密码本的思路却孕育出流密码(stream cipher)。
4. DES
DES(Data Encryption Standard)是1977年美国联邦信息处理标准(FIPS)中所采用的一种对称密码。DES一直以来被美国以及其他国家的政府和银行等广泛使用。随着计算机的进步,现在DES已经能够被暴力破解,强度大不如前了。20世纪末,RSA公司举办过破译DES密钥的比赛(DES Challenge),在1977年DES Challenge I中用了96天破译密钥,1998年DES Challenge II-1中用了41天,1998年DES Challenge II-2中用了56个小时,1999年DES Challenge III 中用了22小时15分钟。由于DES的密文可以在短时间内被破译,因此除了用它来解密以前的密文以外,现在不应该再使用DES了。
4.1 DES 加密与解密
DES是一种将64比特的明文加密成64比特的密文的对称密码算法,它的密钥长度是56比特。尽管从规格上来说,DES的密钥长度是64比特,但由于每隔7比特会设置一个用于错误检查的比特,因此实质上其密钥长度是56比特。
DES是以64比特的明文(比特序列)为一个单位来进行加密的,这个64比特的单位称为分组。一般来说,以分组单位进行处理的密码算法称为分组密码(block cipher),DES就是分组密码的一种。
DES每次只能加密64比特的数据,如果要加密的明文比较长,就需要对DES加密进行迭代(反复),而迭代的具体方案就称为模式(mode)。
4.2 DES 结构 - Feistel网络
DES的基本结构是由Horst Feistel设计的,因此也称为Feistel网络、Feistel结构、或Feistel密码。这一结构不仅用于DES中,在其它很多密码算法中也有应用。
在Feistel网络中,加密的各个步骤称为轮(round),整个加密过程就是进行若干次轮的循环。下图展现的是Feistel网络中一轮的计算流程。DES是一种16轮循环的Feistel网络。
上图中,输入的数据被等分为左右两半分别进行处理,输出的左半部分是密文,而右半部分依然是明文。中间的”子密钥”指的是本轮加密所使用的密码。在Feistel网络中,每一轮都需要使用一个不同的子密钥。
由于子密钥只在一轮中使用,它只是一个局部密钥,因此才称为子密钥。
轮函数
的作用是根据“右侧”和子密钥生成对“左侧”进行加密的比特序列,它是密码系统的核心。将轮函数的输出与“左侧”进行XOR运算,其结果就是“加密后的左侧”。也就是说,我们用XOR将轮函数的输出与“左侧”进行了合并。而输入的“右侧”则会直接成为输出的“右侧”。
下图展示了一个3轮的Feistel网络,3轮加密计算需要进行两次左右对调。对调只在两轮之间进行,最后一轮结束后不需要进行对调。
Feistel网络应该如何进行解密?Feistel网络的解密操作只要按照相反的顺序来使用子密钥就可以完成了,而Feistal网络本身的机构,在加密和解密时都是完全相同的,有多轮也是一样。关于这一点,我们可以从XOR的性质进行思考。
**Feistel网络的性质:**
- 轮数可以任意增加。
- 加密时无论使用任何函数作为轮函数都可以正确解密。也就是说,即使使用轮函数的输出结果无法逆向计算出输入的值(即该函数不存在反函数)也没有问题。
- 加密和解密可以用完全相同的结构来实现。因此用于实现DES算法的硬件设备的设计也变得很容易。
正是由于Feistel网络具有如此方便的特性,它才能够被许多分组密码算法使用。
4.3 差分分析与线性分析
差分分析是一种针对分组密码的分析方法,这种方法有Biham和Shamir提出,其思路是改变一部分明文并分析密文如何随之改变
。理论上说,即便明文只改变一个比特,密文的比特排列也应该发送彻底的改变。于是通过分析密文改变中所产生的偏差,可以获得破译密码的线索。
线性分析也是一种密码分析方法,有松井充提出,其思路是将明文和密文的一些对应比特进行XOR并计算其结果为0的概率
。如果密文具备足够的随机性,则任选一些明文和密文的对应比特进行XOR结果为0的概率应该是1/2。如果能够找到大幅偏离1/2的部分,则可以借此获得一些与密钥有关的信息。使用线性分析法,对于DES只需要2^47组明文和密文就能够完成破解,相比需要尝试2^56个密钥的暴力破解来说,所需要的计算量得到了大幅减少。
差分分析和线性分析都有一个前提,那就是假设密码破译者可以选择任意明文并得到加密的结果,这种攻击方式称为选择明文攻击(Chosen Plaintext Attack, CPA)。以AES为代表的现代分组密码算法,在设计上已经考虑了针对差分分析和线性分析的安全性。
5. 三重DES
现在DES已经可以在现实的时间内被暴力破解,因此我们需要一种用来替代DES的分组密码,三重DES就是出于这个目的被开发出来的。三重DES(triple-DES)是为了增加DES的强度,将DES重复3次所得到的一种密码算法,也称为TDEA(Triple Data Encryption Algorithm),通常缩写为3DES。
5.1 三重DES的加密
明文经过三次DES处理才能变成最后的密文,由于DES密钥的长度实质上是56比特,因此三重DES的密钥长度就是56 * 3 = 168比特。
从上图中可以看到,三重DES并不是进行三次DES加密,而是加密 -> 解密 -> 加密的过程。在加密算法中加入解密操作让人感觉很不可思议,实际上这个方法是IBM公司设计出来的,目的是为了让三重DES能够兼容普通的DES。当三重DES中所有的密钥都相同时,三重DES就等同于普通的DES了
。这是因为前两步加密 -> 解密之后,就得到最初的英文。因此,以前用DES加密的密文,就可以通过这种方式用三重DES进行解密,这样三重DES对DES具备了向下兼容性。
5.2 三重DES的解密
尽管三重DES目前还被银行机构使用,但其处理速度不高,除了特别重视向下兼容性情况以外,很少被用于新的用途。
6. AES
6.1 什么是AES
AES(Advanced Encryption Standard)是取代其前任标准DES而成为新标准的一种对称密码算法。全世界的企业和密码学家提交了多个对称密码算法作为AES的候选,最终在2000从这些候选算法中选出了一种名为Rijindael的对称密码算法,并将其确定了AES。下表是AES最终的候选算法名单,排名不分先后。
名称 | 提交者 |
---|---|
MARS | IBM公司 |
RC6 | RSA公司 |
Rijindael | Daemen,Rijmen |
Serpent | Anderson,Biham,Knudsen |
Twofish | Counterpane公司 |
</br>
6.2 Rijndael
Rijndael是由比利时密码学家Joan Daemen和Vincent Rijmen设计的分组密码算法,与2000年被选为新一代的标准密码算法-AES。今后会有越来越多的密码软件支持这种算法。
Rijndael的分组长度和密钥长度可以分别以32比特为单位在128比特到256比特的范围内进行选择。不过在AES的规格中,分组长度固定为128比特,密钥长度只有128、192和256比特三种。
6.3 Rijindael的加密和解密
和DES一样,Rijndael算法也是由多个轮构成的,其中每一轮分为SubBytes、ShiftRows、MixColumns和AddRoundKey共四个步骤。DES使用Feistel网络作为其基本结构,而Rijndael没有使用Feistel网络,而是使用了SPN结构。
Rijndael的输入分组为128比特,也就是16字节。首先,需要逐个字节地对16字节的输入数据进行SubBytes处理。所谓SubBytes
,就是以每个字节的值(0 ~ 255的任意值)为索引,从一张拥有256个值的替换表(S-Box)中查找出对应值的处理。也就是说,要将一个1字节的值替换成另一个1字节的值。下图所示为4 * 4 = 16字节的数据通过S-Box替换1字节的情形。
SubBytes之后需要尽心ShiftRows
处理。这一步是将以4字节为单位的行按照一定的规则向左平移,且每一行平移的字节数是不同的。下图所示为ShiftRows中对其中一行进行处理的情况。
ShiftRows之后需要进行MixColumns
处理。这一步是对一个4字节的值进行比特运算,将其变为另外一个4字节值。下图所示为MixColumns中对一列进行处理的情形。
最后,需要将MixColumns的输出与轮密钥进行XOR,即进行AddRoundKey处理。下图所示为AddRoundKey中对其中1个字节进行处理的情形。到这里,Rijindael的一轮就结束了。实际上,在Rijindael中需要重复进行10~14轮计算。
通过上面的结构我们可以发现输入的所有比特在一轮中都会被加密。和每一轮都只加密一半输入的比特的Feistel网络相比,这种方式的优势在于加密所需要的轮数更少。此外,这种方法还有一个优势,即SubBytes、ShiftRows和MixColumn可以分别以字节、行、和列为单位进行并行计算。
Rijindael加密与解密过程如下:
其中,AddRoundKey是与轮密钥进行XOR运算,因此这一步在加密和解密时是完全相同的,剩下的步骤中名字前面都带有Inv,这表示与原始步骤相对应的逆运算。
6.4 Rijindael的破译
对于Rijindael来说,可能会出现以前并不存在的新的攻击方式。文中没有提及,大家可以自行上网补脑。但是Rijindael的算法背后有着严谨的数学结构,也就是说从明文到密文的计算过程可以全部用公式来表达,这是以前任何密码算法都不具备的性质
。如果Rijindael的公式能够通过数学运算来求解,那也就意味着Rijindael能够通过数学方法进行破译,而这也就为新的攻击方式的产生提供了可能。
不过,这也只是一种假设而已,实际上到现在为止还没有出现针对Rijindael的有效攻击。
6.5 应该使用哪种对称密码呢
- 首先,DES不应再用于任何新的用途。
- 第二,三重DES也不应用于任何新的用途,尽管在一些重视兼容性的环境中还会继续使用,但它会逐渐被AES所取代。
- 第三,
应该用AES(Rijindael)
。 - 第四,AES最终候选算法应该可以作为AES的备份。
- 最后,
不应该使用任何自制的密码算法
。
PS: 本文中所介绍的所有密码算法,都只能对一个固定长度的分组进行加密。当需要加密的明文长度超过分组长度时,就需要对密码算法进行迭代。